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ABSTRACT 
Recently, deep neural networks (DNNs) are actively used for action control so that an autonomous 
system, such as the robot, can perform human-like behaviors and operations. Unlike recognition 
tasks, the real-time operation is essential in action control, and it is too slow to use remote learning 
on a server communicating through a network. New learning techniques, such as reinforcement 
learning (RL), are needed to determine and select the correct robot behavior locally. In this paper, 
we propose an energy-efficient DNN processor with a LUT-based processing engine and near-
zero skipper. A CNN-based facial emotion recognition and an RNN-based emotional dialogue 
generation model is integrated for natural HRI system and tested with the proposed processor. It 
supports 1b to 16b variable weight bit precision with and 57.6% and 28.5% lower energy con-
sumption than conventional MAC arithmetic units for 1b and 16b weight precision. Also, the near-
zero skipper reduces 36% of MAC operation and consumes 28% lower energy consumption for 
facial emotion recognition tasks. Implemented in 65nm CMOS process, the proposed processor 
occupies 1784x1784 um2 areas and dissipates 0.28 mW and 34.4 mW at 1fps and 30fps facial 
emotion recognition tasks. 

KEY WORDS  
Deep learning, deep learning ASIC, deep neural network, mobile deep learning, reinforcement 
learning. 
 

1. INTRODUCTION 
The recent development of deep learning technology 
enables machines to recognize the human user’s emo-
tion accurately with facial expressions [1] and dia-
logues [2]. Recent studies [3-5] try to adopt emotion 
recognition into mobile devices, which allows ma-
chine to understand user’s intend and enables more 
natural human-robot interaction (HRI). Unlike the 
recognition task, the real-time operation is essential in 
the field of HRI, and it is too slow to use remote learn-
ing on the server through the network. New learning 
techniques such as reinforcement learning (RL) are 

needed to determine and select the correct robot’s re-
sponse locally. 

Deep RL (DRL) agent, an agent having both RL and 
DNN, adapts the DNN through with two components 
in general, Actor and Learner (Figure 1) [1], [2]. 
While processing the DRL, the actor continuously in-
teracts with the environment, and the learner trains the 
DNN at regular interval to obtain the maximum re-
ward. The actor observes the state of the environment 
(St) and selects the actions (At) determined by current 
DNN outputs and its policy. After the At, the agent 
receives the state (St+1) and a scalar reward (Rt) at the 
next time step. Every time step, the actor stores the 
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sampled experiences, {St, At, St+1, Rt}, in the replay 
memory to train DNN by the learner. The replay 
memory stores a large number of experiences 
(~10,000) to exploit the experience replay technique, 
which is widely used for DRL algorithms in order to 
stabilize the training of DRL agent [3]. The learner 
fetches the multiple random samples of experiences as 
a batch, and it uses loss function to maximize the re-
ward with the action determined by current DNN. 
Then, the learner updates the DNN weights with cal-
culated gradients from the loss function.  

Previous DNN HW [4], [5] performed only inference, 
and since their data parallelism had only fixed data-
path, their memory access is not optimized for DRL 
application, which requires adaptive data reuse for not 
only inferencing but also training. Even though [6] 
was able to tune the DNN, it did not update the 
weights of all layers of FCL but the last few layers 
only with a limited number of poor performance PEs. 

For natural human-robot interaction (HRI), we newly 
introduce an emotional HRI system for mobile devices, 
as shown in Figure 2. It consists of 3 parts, (1) face 
detection/alignments for face RoI generation, (2) 
CNN-based facial emotion recognition (FER). And 
RNN-based emotional dialogue generation (EDG) 
where the RNN is simultaneously updated through 
continuous interaction with users by DRL. The output 
of FER, user’s emotion, is used as input of EDG with 
user’s speech. EDG performs natural language pro-
cessing and outputs different dialogues due to the 
user’s emotional state. We optimized both FER’s and 
EDG’s DNN network’s weight bit-precision in order 
to realize real-time operation. The optimized CNN 
network has 16b weight and 1b weight bit precision 
for the input layer and other layers, respectively. It 
achieves <1% accuracy degradation in comparison 

with the model using 32b floating point weights. Be-
sides, the EDG model is trained by reinforcement 
learning method. It uses 4b weight bit precision.  
In this paper, an energy-efficient DNN processor has 

been integrated, which supports variable weight bit 
precisions in order to combine two different DNN 
models into a battery-powered mobile device. We pro-
pose variable weight-bit precision DNN processor 
with an energy-efficient look-up-table based pro-
cessing engine (LPE). It fully supports 1b-to-16b 
weight precision with binary multiplication optimized 
LPE and bit-serial shifter. It consumes 57.6% and 
28.5 % less energy in comparison with a conventional 
multiplier. Further, it supports near-zero skipping, 
which reduces the average 36% MAC operation and 
28% energy consumption for facial emotion recogni-
tion tasks. 

The rest of this paper is organized as follows. In Sec-
tion 2, the overall architecture and the key building 
blocks are described. Section 3 shows the implemen-
tation results and measurement results. Section 4  
provides a conclusion. 
 
 

2. BUILDING BLOCKS 
A. Overall Architecture 
Figure 3 shows the overall architecture of the pro-
posed DNN processor. It consists of the preprocessing 
core, and the LUT-based PE core (LP Core), which are 
connected with a network-on-chip interface for com-
munications. The pre-processing core performs face 
detection and alignment for face RoI generation, and 
the face RoI is transferred to LPE core. Two 6KB 
OMEMs and 36KB WMEM are integrated into LPE 
core. When the activation of DNN comes into activa-
tion buffer, the Near-zero detector bit-shift activation 
data and skip the MAC operation of activations 
smaller than the predefined threshold value. 4 LPE 
clusters perform DNN processing of different input 
channels. Each LP cluster consists of 4 LPEs, and each 
LPE includes 8-entry look-up table of 4 input activa-
tions and outputs 12 different output data using 12 8-
to-1 multiplexers. The detailed operation of LPE is de-
scribed later. 12 outputs of 4 LPs and LP clusters are 
accumulated by 12 4-way add/sub trees. The bit-serial 
shifter performs bit-serial multiplication for weight-
bit scalable DNN processing. The outputs are stored 
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Figure 2. Emotional HRI System with Facial Emotion Recognition and Emotional Dialogue Generation Model 
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in OMEMs, and ping-pong accumulation engine accu-
mulates the partial-summations of DNN. 
 
B. LUT-based Processing Engine (LPE) 
Figure 4 explains the binary weight multiplication of 
LPE. The outputs of LPEs are accumulated and shifted 
by the bit-serial shifter for bit-serial multiplication. In 
the case of 1b weight, 1-weights, and 0-weights repre-
sent addition, and substitution of activation, respec-
tively. When LPE fetches new input activations, the 
LPE generates and keeps all the combinations that can 
be made from 4 input activations with binary weights 
(A-step: LUT update). Because each input activations 
is multiplied output channel size (CO) kernel size (k) 
times with DNN weights, if we pre-calcu late and store 
16 different combinations, whole Co k binary weight 
multiplication can be replaced by simple indexing of 
the LUT based on the weights (B-step: Calculation). 
To further reduce the number of entries of the LUT, we 
exploit the characteristic of 2’s complement. The total 
of 16 combinations can be divided into two parts, as 
shown in the figure. The 8-entry table in the left, phys-
ical LUT, stores multiplication results of weight’s 
MSB equals one. The multiplication results of weight’s 
MSB equals zero, logical LUT, is the full inversion of 
the physical LUT that we replace the half entries, eight 

16b registers, with an inverter and a multiplexer. In ad-
dition, LPE cluster controller reconfigures the data 
path of 4-way add/sub trees that it calculates and store 
the pre-calculate the LUT value during the A-step, and 
it accumulates and outputs the indexed outputs of 4 
LPEs at B-step. 

In Figure 5, we simulated and analyzed the energy 
consumption of LPE by the number of input activation 
per LUT (E) at 200MHz, 1.1V operating condition. 
The normalized energy consumption is measured with 
the same external memory bandwidth and the same 
throughput condition. When the E becomes larger, the 
accumulation power of LUT outputs becomes smaller, 
but the entry size of LUT becomes exponentially larger. 
In our simulation, the optimal size of E is 4 that we 
designed LUT with 8-entries. In addition, because it is 
more efficient to index single LUT with multiple 
weights, we measured energy consumption by the 
number of parallel outputs of LPE (N), and we find the 
optimal size of E and N as 4 and 12. Therefore, 12 mul-
tiplexers are integrated into an LPE, and an LPE cluster 
accumulates 4 12 parallel outputs with 12 4-way 
add/sub tree.   

 

 

 
Figure 3. Overall Architecture 
 

 

 
Figure 4. Detailed Binary Weight Multiplication of LPE 

 

 
Figure 5. Energy Consumption of LPE with various number of 
entry size and parallel outputs. 

 

 
Figure 6. 2b-to-16b bit-serial multiplication using LPE results 
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With binary-multiplication optimized LPE, the bit-
serial multiplication method is adopted in order to re-
alize the variable weight bit precision of DNN. Figure 
6 explains the PE configuration at N-bit weights. It se-
quentially calculates the addition and substitution of 
input activations with multiplication results of binary 
weights from the LSB to the MSB for N-cycles. During 
the 2b-to-16b multiplication, LPE controller reconfig-
ures the configurations of LPE that LUT stores all 
combinations of 3 input activations as shown in the fig-
ure. In Figure 7, the LPE energy consumption for CNN 
and RNN is described. The power consumption for 
16’b CNN and RNN is reduced by19.8% and 28.5%, 
respectively. And for the binary weight, the power con-
sumption for the 1’b CNN and RNN is reduced by 46.4% 
and 57.6%, respectively. 

Figure 8 shows the spatial and temporal data map-
ping of LPEs for CNN processing. In the beginning, an 
LPE cluster fetches 16 input activations, which are the 
pixels of the same coordinate but 16 different input-

channels. Then, each LPE updates LUT with 4 input 
activations (A-step). It takes 3-cycles. After the LUT 
update step, LPEs fetch weights and outputs the values 
of LUT by weights. At every cycle, LPE fetches 4×12 
weight, which are the kernels of the 4 different input 
channels, 12 different output channels, but the same 
coordinate. So, each LPE outputs 12 LUT values at 
every cycle, and the 4-way add/sub-tree in LPE cluster 
accumulates the 4×12 outputs to 12 output. It takes ker-
nel-size cycles. After kernel-size cycles, there are no 
kernels to multiply with input activations in LPE, that 
LPE fetches new input activation in the same coordi-
nate but 16 different input-channels and repeat the 
above procedure. What if the input activations within 
the same coordinate are fully processed, the LPE 
fetches the new input activations in the next coordinate.  

The near-zero skipper is explained in Figure 9. 
While the input buffer fetches new input activations, 
near-zero-skipper monitors input buffer and blocks the 
activations, smaller than the threshold value. This 
threshold value is programmable that can be varied 
through different layers of DNN. It simply bit-shift the 
data in input-buffer to the right, and what if the shifted 
data is 0, it blocks the activations. In the case of nega-
tive numbers, it inverses full-bits of the data before bit-
shift. Moreover, it skips the corresponding weights of 
the blocked input activations. While processing the 
FER normalized binary weight CNN with FER2013 
dataset, the average skipping ratio is 36% with the 
threshold of 4 that the overall power consumption is 
reduced by 28%. 

3. IMPLEMENTATION RESULTS 
Figure 10 shows the chip micrograph. The proposed 
processor is fabricated with 65nm 1P8M Logic CMOS 
process with 1784×1784 um2. It operates from 0.67-
1.1V supply voltage with 5-200MHz clock frequency 
range. In the case of facial expression recognition with 
weight-bit precision optimized CNN, it consumes 
0.28 mW and 34.4mW at 1fps and 30fps, respectively. 
For the emotional dialogue generation tasks, it gener-
ates different response due to the user’s emotional 
states. It consumes 56 mW and takes 1.36-second la-
tency with 4 layered 8b weight GRU model. The peak 
CNN power efficiency is measured as 13.6 TOPS/W 
at 0.66V, 5MHz operating condition, and peak 
RNN/FC power efficiency is measured as 15.7 
TOPS/W at the same condition with binary weight bit 
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Figure 7. Energy Consumption Caparison with Conventional 

       

 

 
Figure 8. Spartial and Temporal Data Mapping of LPEs 

 

 
Figure 9. Near-zero Skipping Method 
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precision. 
Figure 11 shows the facial emotion recognition test 

with FER2013 dataset. The network is trained to have 
8 CNN layers followed by 2 fully connected layers us-
ing DRL. Only the first input layer of the network has 
16-bit weight kernel, and the other layers are having 
1-bit binary weights. Test result shows that near-zero 
skipper skips the 36% of input and intermediate acti-
vations in average when the skipping threshold is set 
as 4. In our face recognition test, our proposed chip 
consumes 0.28 mW average for the 1fps frame rate at 
5MHz, 0.66V. For the 30fps frame rate, it consumes 
34.4 mW at 100MHz, 1.1V operating condition.  

4. CONCLUSIONS 
We propose an energy-efficient DNN processor 

with a LUT-based processing engine and near-zero 
skipper. A CNN-based facial emotion recognition and 
an RNN-based emotional dialogue generation model 
is integrated for natural HRI system and tested with 
the proposed processor. LPE supports 1b to 16b vari-
able weight bit precision with and 57.6% and 28.5% 
lower energy consumption than conventional MAC 
arithmetic units for 1b and 16b weight precision. Also, 
the near-zero skipper reduces 36% of MAC operation 
and consumes 28% lower energy consumption for fa-
cial emotion recognition tasks. Implemented in 65nm 
CMOS process, the proposed processor occupies 
1784×1784 um2 areas and dissipates 0.28 mW and 
34.4 mW at 1fps and 30fps in CNN-based facial emo-
tion recognition task with face detection and face 
alignment. Also, for the RNN-based emotional 
dialogue generation task, it consumes 56mW with 
1.36-second latency. In conclusion, the 1b-to16b fully 
variable weight bit precision low-power DNN proces-
sor for <100mW natural HRI system is successfully 
realized for mobile devices.  
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Figure 10. Chip Micrograph 

 

 
Figure 11. Facial emotion recognition test with FER2013 da-
taset and performance summary 
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